Telegram Group & Telegram Channel
AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator



tg-me.com/knowledge_accumulator/34
Create:
Last Update:

AlphaZero [2018] - история о плодотворной дружбе поиска и глубокого обучения

Обобщая, есть 2 поколения подходов в настольных играх:

1) Поиск по всем вариантам с оптимизациями
Шахматные алгоритмы, начиная с появления компьютеров, как минимум до Deep Blue [1997], работали на основе таких подходов. В глубине души они по эффективности похожи на полный перебор, но засчёт хитростей (вроде дебютной книги и эвристических оценок позиций в листьях дерева поиска) алгоритмам удаётся как-то работать.

2) Направленный поиск с помощью обучаемой функции полезности
Именно в этом и состояла революция AlphaGo (и её потомка AlphaZero). Оказалось, что обучаемая функция полезности действия в данной позиции позволяет перебирать радикально меньше вариантов ходов из каждой позиции. Она позволяет строить дерево поиска на больше ходов вперёд, потому что мы грамотно выбираем ходы при переборе.
Что интересно, обучается данная функция довольно просто - достаточно генерировать данные, садя алгоритм играть против себя же и своих прошлых итераций, и учить её предсказывать результат игры. В результате система легко обходит человека в шахматы и го.

Слабые точки AlphaZero понятны - требует много данных, обучается отдельно под одну игру. Но все революции за раз не совершить!

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/34

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Knowledge Accumulator from ms


Telegram Knowledge Accumulator
FROM USA